Relations

In the following tables we display our (non-canonical) choice of indecomposable eMZVs for a given weight and length. Further below, explicit rules allowing to express eMZVs in terms of those are provided. The appearance of usual MZVs is discussed in [arXiv:1507.02254].

Indecomposable eMZVs of odd weight

 
   
     
       
             

Indecomposable eMZVs of even weight

 
     
         
                 
                       
           

Length 2

A closed formula is available for length two:


     \,\omega(n_1,n_2) \, \Big|_{n_1+n_2 \ \text{odd}} = (-1)^{n_1} \,\omega(0,n_1+n_2) + 2 \,\delta_{n_1,1} \,\zeta_{n_2} \,\omega(0,1) - 2 \,\delta_{n_2,1} \,\zeta_{n_1} \,\omega(0,1)

	    +2 \sum_{p=1}^{\lceil \frac{1}{2}(n_2-3) \rceil} {n_1+n_2 - 2p-2\choose n_1-1} \,\zeta_{n_1+n_2-2p-1} \,\omega(0,2p+1)

     -2\sum_{p=1}^{\lceil \frac{1}{2}(n_1-3) \rceil} {n_1+n_2 - 2p-2\choose n_2-1} \,\zeta_{n_1+n_2-2p-1} \,\omega(0,2p+1)\,,

Length 3

Length 4

Length 5

Length 6